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Abstract

In these notes, we address the question if a given smooth manifold M
admits a Riemannian metric with positive scalar curvature. If so, we also
introduce the tools to classify all such metrics.

One principal tool to invistigate these problems is the Schrödinger-
Lichnerowicz formula, which connects these problems to index theory —
more specifically to the index of the Dirac operator on a spin manifold. A
decisive role in the calculation of these invariants is played by the Atiya-
Singer index theorem and its higher variants, and also by its relative
version. The latter involves also ideas around the Atiyah-Patodi-Singer
index theorem. It is crucial to use “higher” variants of these invariants
to get optimal information. In particular, we will use the K-theory of
C∗-algebras and index obstructions in these K-theory groups.

For the classification results one relies on the Atiyah-Patodi-Singer
index theorem and the calculation of eta-invariants; aspects not covered
in the course.

The course has been divided in two parts. The first part studied con-
centrated on the K-theory and index theory underlying the most powerful
obstructions to the existence of metrics of postivie scalar curvature.

The second part, which is not relying on specific results and construc-
tions from the first part, changes gears. Given a compact smooth manifold
M without boundary which admits Riemannian metrics of positive scalar
curvature, we will look in more detail at the space of all such metrics.

We will discuss the basic tool to construct metrics of positive scalar
curvature wich is “surgery”. This allows to investigate the geometric
problem of understanding the space of metrics of positive scalar curvature
with tools from algebraic topology, in particular based on bordism theory.
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We will therefore also spend some time discussing the underlying algebraic
topology.

In particular, we discuss relevant aspects of the classification of simply
connected manifolds which admit metrics of positive scalar curvature (due
to Gromov-Lawson and Stolz).

We end short of giving details of some of the various results which show
that the space of metrics of positive scalar curvature has a rich topology,
with infinitely many components (and infinite higher homotopy groups).

1 Organisation of the talks

There are 8 lectures of 90 minutes each.

(1) First lecture: Survey, including the main results to be discussed in the
course.

• Riemannian geometry of positive scalar curvature

• spin structures and Dirac operator

• Schrödinger-Lichnerowicz formula (repetition)

• Atiyah-Singer index theorem and first obstructions to positive scalar
curvature: K3-surfaces and the Bott-manifold do not admit metrics
with positive scalar curvature

• Hitchin and Rosenberg higher index

(2) Second lecture: K-theory obstructions to positive scalar curvature

• flash on constructions of positive scalar curvature metrics, and on
non-triviality results for πk(R+(M)).

• The K-theory philosophy:

– Invertibility implies vanishing in K-theory

– special geometry implies invertibility

– better: special geometry gives a reason for invertibility

– this reason gives a secondary invariant which classifies special
geometry.

(3) Third lecture: Clifford and Spin geometry

• The real and complex Clifford algebras

• gradings

• algebraic Bott periodicity in Clifford algebras

• spin geometry from Clifford eometry

• the Clifford linear real graded Dirac operator

(4) Fourth lecture: the universal primary and secondary index
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• K-theory of general graded and Real C∗-algebras

• Hilbert A-modules and operators on them

• Hilbert A-module bundles

• the higher index of the Clifford linear graded Dirac operator twisted
by a Hilbert A-module bundle

• the secondary index coming measuring positive scalar curvature

(5) Lectures 5-7: Classification of metrics of positive scalar curvature and
bordism theory

• basic definition of surgery

• computing and adjusting homotopy groups in surgery constructions

• the role of the spin condition: making normal bundles trivial

• connection to Morse theory

• the Gromov-Lawson, Schoen-Yau, Hajac-Stolz psc surgery result

• its family versions: Surgery constructions of Chernysh, Walsh (Ebert-
Frenck, Bär-Hanke)

(6) Lecture 8: The Stolz positive scalar curvature exact sequence and non-
triviality of the homotopy type of the space of metrics of positive scalar
curvature

(7) Topics not covered in the course:

• The improved surgery constructions of Ebert-Wiemeler: homotopy
type of R+(M) for closed simply connected spin manifold M depends
at most on the dimension.

• Non-triviality results for homotopy groups ofR+(M) andR+(M)/D(M):

– Hitchin’s construction via the action of the diffeomorphism group:
π0, π1, π2 via exotic spheres and the Gromoll filtration.

– Crowley-S. and Crowley-S.-Steimle: improvement to higher ho-
motopy groups (even infinitely many at once)

– Hanke-Schick-Steimle

– Botvinnik-Ebert-Randal-Williams and Randal-Williams construc-
tions

• Higher index theory

– (Family index theory)

– C∗-algebras and their K-theory

– Mishchenko-Fomenko index theory

– Refined obstructions to positive scalar curvature (Rosenberg in-
dex)

– The Gromov-Lawson-Rosenberg conjecture about positive scalar
curvature
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– Enlargeability

– The Gromov-Lawson obstruction to positive scalar curvature:
existence of negative sectional curvature prevents positive scalar
curvature

– codimension 2 obstructions to break the symmetry (a reinter-
pretation of another result of Gromov-Lawson in the context of
higher index theory)

– Kubota and Kubota-S. connection of the codimension 2 obstruc-
tion with the Rosenberg index and the index universality conjec-
ture

• Stephan Stolz proof of the stable Gromov-Lawson-Rosenberg conjec-
ture

– the stable Gromov-Lawson-Rosenberg conjecture

– Kasparov’s KK-theory

– index in KK-theory

– K-homology; the Baum-Connes conjecture

– HP 2-bundles and the corresponding cohomology theory

– Stephan Stolz’ proof of the stable Gromov-Lawson-Rosenberg
conjecture

• minimal hypersurface obstructions to positive scalar curvature (after
Schoen-Yau)

– (stable) minimal hypersurfaces

– geometric measure theory force the existence of minimal surfaces

– positive scalar curvature and minimal surfaces (Schoen-Yau)

– Counterexamples to the (unstable) Gromov-Lawson-Rosenberg
conjecture

• (universally) invertible Dirac versus truely positive scalar curvature

• positive versus non-negative scalar curvature

• Families of metrics distinguished by rho-invariants (beyond S0-parametrized
ones, which we have “by accident” from the lens spaces

2 Talk 1: Surveying “The topology of positive
scalar curvature”

2.1 Basics from Riemannian geometry

(1) Riemannian metric, metric tensor gij in local coordinates

(2) length of curves, distances

(3) areas of 2-dimensional hypersurfaces
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(4) volume element

(5) curvature tensor Rlijk with many symmetries. Tracing gives Ricci tensor
Ricij , taking trace a second time gives scalar curvature scal : M → R.

(6) Quick and dirty definition/basic relation:

vol(Br(x) ⊂M)

vol(Br(0) ⊂ Rm)
= 1− scal(x)

6(m+ 2)
r2 +O(r4) small r.

(7) For Sn with standard metric: scal = n(n− 1).

(8) Physical relevance: scalar curvature features in Einstein’s general relativ-
ity.

2.2 Gauß-Bonnet Theorem

2.1 Theorem (Gauß-Bonnet). If F is a 2-dimensional compact Riemannian
manifold without boundary,∫

F

scal(x) d vol(x) = 4πχ(F ).

2.2 Corollary. scal > 0 on F implies χ(F ) > 0, i.e. F = S2,RP 2 if F is
connected.

Philosophically: generically, we might have negative curvature, but positive
curvature is rare and special.

2.3 Negative scalar curvature can almost always be achieved

2.3 Theorem (Kazdan-Warner). Let M be a connected closed smooth manifold.
Assume dim(M) ≥ 3.

Then if f(x) < 0 somewhere, a Riemannian metric with scalg = f exists.

Moreover, precisely one of the following cases occurs:

(1) M admits a metric with scal > 0. Then for every f : M → R smooth there
is a Riemannian metric g with scalg = f

(2) M does not admit a Riemannian metric with scal > 0, but one with scal =
0.

If scalg ≥ 0 then automatically even Ricg = 0 (this is not due to Kazdan-
Warner).

(3) M does not admit a metric with scal ≥ 0.
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2.4 The players and main questions

2.4 Definition. • R+(M) := {g | scalg > 0}

• moduli spaces R+(M)/D(M) where D(M) ⊂ Diffeo(M) is a subgroup
of the diffeomorphism group (all diffeomorphisms, orientation preserving
diffeomorphisms, diffeomorphisms fixing a point and its tangent space,. . . )

• π0(R+(M)), the set of components of the space of psc metrics

• π0(R+(M)/D(M)) the set of components of the moduli space of psc met-
rics

• weaker equivalence relation than “connected”:

– isotopy

– bordism (with reference space X)

• Pos(X), the group of bordism classes of manifolds with psc metric and
with map to X, group by disjoint union. If X = M contains a coset of
metrics realized on M with identity.

2.5 Question. What is the topological type of R+(M).
Subquestion: R+(M) = ∅?
Subquestion: how many components? Higher homotopy groups?

To answer these questions, we need

(1) obstructions and invariants (to distinguish)

(2) consturction methods (to obtain mentrics)

2.5 Spin and Dirac

(1) Dirac introduced the (flat) Dirac operator as a square root of the matrix
Laplacian, using Pauli matrices:

D =
∑

Xi · ∂/∂xi

where the matrices Xi satisfy the Clifford relations XiXj+XjXi = −2δij .

(2) Schrödinger (“Das Diracsche Elektron im Schwerfeld”) developped a ver-
sion (in local coordinates) for curved space-time. He observed (a local
computation)

D2 = ∇∗∇+
scal

4

This has consequences for the spectrum of the Dirac operator (which is
what physicists are interested in: the spectrum describes the energy levels
of the electron.
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(3) Atiyah-Singer establish the geometric additional structure for this opera-
tor to exists globally on a Riemannian manifold (acting on sections of a
vector bundle):

one needs a spin structure with associated spinor bundle

(4) Lichnerowicz rediscoverd the Schrödinger formula, now formulated for the
global Dirac operator

Main consequence: uniformly positive scalar curvature implies that the
Dirac operator is invertible

(5) Atiyah-Singer establihs the index theorem, giving in particular

ind(D) = dim ker(D+)− dim ker(D−) =

∫
M

Â(M).

The right hand side is independent of the metric, so gives an obstruction
to psc.

Example: Kumemr surface.

Non-example: CP 2n, Tn.

(6) Hitchin uses a real version of the Dirac operator and of the index to obtain
a finer invariant

α(M) ∈ KOdimM (R),

which still has topological meaning and is an obstruction to psc on M .

Example: half of the exotic spheres in dimension 1, 2 (mod 8)

(7) Indeed, there is a K-theory philosophy to be discussed here!

(8) Rosenberg twists with the Mishchenko bundle, a canonical flat bundle of
modules over the group C∗-algebra C∗Γ with Γ = π1(M).

One has an index α(M) ∈ KOdimM (C∗Γ) which still obstructs psc. The
Mishchenko-Fomenko index theory applies to this index and shows that it
still is topological and an obstruction to psc.

Example: Tn.

(9) Former Gromov-Lawson-Rosenberg conjecture: a spin manifold M has psc
if and only if the Rosenberg index vanishes

(10) Counterexample (by S.): Surgery on the 5-torus forces vanishing of the
index.

Schoen-Yau minimal hypersurface method shows that the example does
not admit a psc metric.

(11) Stable GLR conjecture: a spin manifold stably has psc if and only if the
Rosenberg index vanishes.

(12) Stolz: the strong Novikov conjecture implies the stable GLR conjecture
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(13) Index universality conjecture: whenever we obtain information on psc
using index theory (on a spin manifold) of some sorts, this is also detected
by the Rosenberg index.

(14) Kubota, Kubota-S.: the Gromov-Lawson codimenison 2 obstruction sat-
isfies the index universality conjecture

2.6 Surgery constructions of psc

2.6 Definition. Surgery; the construction, codimension, connection to Morse
theory and to bordism.

2.7 Proposition. Weak homotopy equivalence of inclusion

R+
torp,V (M) ↪→ R+(M)

if V is a tubular neighborhood of a codim ≥ 3 submanifold with trivial normal
bundle. Recent work (Ebert-Wiemeler) generalize this even further.

Then we can cut and repaste and “transport” psc from one manifold to an-
other, and do this even in (compact) families.

Topology/surgery theory:
If M is spin bordant to N with a reference map to BΓ which is a π1-iso for

M , then M is obtained from N by surgeries of codimesion ≥ 3.
Applications:

(1) Gromov-Lawson: non-spin simply connected oriented mf carries psc, com-
pare [2, Theorem C].

(2) Rosenberg: understanding which (simply connected) spin manifolds carry
psc upto dimension x (x in twenties)

(3) Stolz: simply connected spin manifold carries psc if and only if Rosenberg
index vanishes.

2.7 Non-trivial higher homotopy classes of R+(M) and its
moduli space

2.8 Theorem. Results on connected components

2.9 Theorem ( Crowley-S.). . If M is a closed spin manifold with dim(M) ≥ 7
and g0 ∈ R+(M), indrel : πn−dim(M)−1(R+(M), g0)→ KOn = Z/2 is surjective,
if n ≡ 2 (mod 8), n ≥ 10.

These were the first examples of non-trivial higher homotopy groups of R+.

2.10 Theorem (Crowley-S.-Steimle). If M is closed spin of dimension d ≥ 6
and g0 ∈ R+(M) then indrel : πn−d−1(R+(M), g0) → KOn = Z/2 is surjective
if n ≡ 1, 2 (mod 8), n > d.
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Here, all the elements in π∗(R
+(M)) are obtained by the action of Diffeo(M),

more specifically Diffeo(Dm, ∂).

2.11 Theorem. If M is closed spin, dim(M) ≥ 6 then M has a Rieman-
nian metric with non-trivial harmonic spinors. The complementary set of met-
rics without such a spinor has non-trivial homotopy groups. (Hitchin: −1, 0, 1
(mod 8), Bär 3 (mod 4))

2.12 Theorem (Hanke, S., Steimle). For each k, if d = dim(M) ≥ N(k) and
n+ k + 1 ≡ 0 (mod 8), M is closed spin with g0 ∈ R+(M) then

indrel : πk(R+(M), g0)→ KOn+k+1
∼= Z has infinite image.

For M a homotopy sphere, this factors through the moduli space R+(M)/Diffeox0
(M),

i.e. the homotopy classes are definitely not obtain by the action of the diffeo-
morphism group.

2.13 Theorem (Botvinnik, Ebert, Randall-Williams). If dim(M) ≥ 6 is closed
spin and g0 ∈ R+(M) then

indrel : πk(R+(M), g0)→ KOk+dim(M)+1

surjects whenever KOk+dim(M)+1 = Z/2, and has infinite image if KOk+dim(M)+1
∼=

Z.

3 Talk 2: Spin and Dirac and the K-theory phi-
losophy on index

In the following, for easy of exposition we concentrate on even dimensional manifolds

and only use complex C∗-algebras.

3.1 Definition. A C∗-algebra A is a norm-closed ∗-subalgebra of the algebra
of bounded operators on a Hilbert space.

We have for a (stable) C∗-algebra A:

• K1(A) are homotopy classes of invertible elements of A.

• K0(A) are homotopy classes of projections in A.

• 6-term long exact K-theory sequence for ideal I ⊂ A:

→ K0(A/I)
δ−→ K1(I)→ K1(A)→ K1(A/I)

δ−→ K0(I)→
→ K0(A)→ K0(A/I)→
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3.1 Framework of index

• Using functional calculus, the Dirac operator gives the bounded operator
χ(D), contained in the C∗-algebra A of bounded operators on L2(S).

Here χ : R→ [−1, 1] is any odd functions with χ(x)
x→∞−−−−→ 1 (contractible

choice).

• dimM even: S = S+ ⊕ S−, χ(D) =
(

0 χ(D)−

χ(D)+ 0

)
.

• If M is compact, ellipticity implies that

χ2(D)− 1 ∈ I, the ideal of compact operators on L2(S),

so also Uχ(D)+ is invertible in A/I (with any unitary U : L2(S−) →
L2(S+): contractible choice).

• It therefore defines a “fundamental class” [D] ∈ K1(A/I).

3.2 Elliptic operators and index

• Analytic fact: an elliptic operator D on a compact manifold is Fredholm:
it has a quasi-inverse P such that

DP − 1 = Q1; PD − q = Q2

and Q1, Q2 are compact operators.

• Consequence of Fredholm property: null-space of the operator and of the
adjoint are finite dimensional, and then

ind(D) := dim(ker(D))− dim(ker(D∗)).

• We apply this to the Dirac operator (strictly speaking to its restriction
D+ to positive spinors).

Apply the boundary map δ : K1(A/I) → K0(I) of the long exact K-theory
sequence 0→ I → A→ A/I → 0 to obtain

ind(D) := δ([D]) ∈ K0(I) = Z.

We have the celebrated

3.2 Theorem (Atiyah-Singer index theorem).

ind(D) = Â(M)

Here Â(M) is a differential -topological invariant, given in terms of the
Pontryagin classes of TM , which can be efficiently computed.

It does not depend on the metric (the Dirac operator does).
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3.3 Definition. Schrödinger’s local calculation relates the Dirac operator to
scalar curvature: D2 = ∇∗∇+ scal /4 ≥ scal /4. It implies:
if scal > c > 0 everywhere, Spec(D) ∩ (−

√
c/2,
√
c/2) = ∅.

Choose then χ = ±1 on Spec(D), therefore ch2(D) = 1 and
Uχ(D)+ is invertible in A, representing a structure class

ρ(Dg) ∈ K1(A),

mapping to [D] ∈ K1(A/I).

Potentially, ρ(Dg) contains information about the positive scalar curvature
metric g.

3.4 Theorem. • If M has positive scalar curvature, then ind(D) = 0 =⇒
Â(M) = 0:

• Â(M) 6= 0 is an obstruction to positive scalar curvature!

Example: Kummer surface. Non-examples: CP 2n, Tn.

Proof.

K1(A) −−−−→ K1(A/I)
δ−−−−→ K0(I)

ρ(Dg) 7→ [D] 7→ ind(D) = 0

using exactness of the K-theory sequence.

3.3 Generalized index situation

General goal: find sophisticated algebras I ⊂ A to arrive at similar index
situations. Criteria:

• index construction must be possible (operator in A, invertible modulo an
ideal I)

• calculation tools for K∗(A), K∗(I) and the index

• positive scalar curvature must imply vanishing of index (and give structure

class ρ ∈ K∗(A))

Useful/crucial is the context of C∗-algebras, where positivity implies invertibility.

4 Talk 3 and 4: Clifford and spin geometry and
a spectral view on K-theory

We want to elaborate a bit on “extra structure”. We should look out for it and
use it whereever possible.
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4.1 Example. First basic example: imagine you had been brought up only
with complex vector spaces, and each time some real vector space normally
would occur you would automatically complexify it. All your matrices (even if
all entries are real) you would consider as matrices over C.

Consequence: you would not know of orientation. In fact, and orientation
preserving real n × n matrix is one which has positive determinant, and it is
important that this property is preserved under deformations and under conju-
gation.

Considered as matrices over C, this makes no sense: positivity is not well
defined for complex non-zero numbers, we can “turn” a matrix with determinant
one inside Gln(C) to one with determinant −1, and also conjugate to one with
opposite determinant.

The definition of “orientation” of a smooth manifold depends on having a
well defined orientation of invertible matrices, so also this would be lost.

On the other hand, looking at elements of M2(R) as real real linear self-maps
of R2 = C, it is very special if such a matrix is complex linear.

E.g.: if we have a C1 map : R2 → R2 whose differential is everywhere com-
plex linear, this is really a holomorphic map, with its great special properties.

4.2 Definition. The Real story.
An C algebra A (e.g. a C∗-algebra) is Real (equipped with a Real structure)

is it has a complexs conjugate algebra involution : AtoA. The fixed element
under this involution are the real elements.

4.3 Example. Most important example (for us): if AR is a R-algebra, then
A := AR ⊗R C is a Real algebra with complex conjugation induced by complex
conjugation in the second tensor factor.

Second example: if X is manifold with an involution τ , then C0(X;C) be-
comes a Real algebra with f(x) := f(τ(x)). In fact, every commutative Real
algebra is of this form. If τ is not the identity, this is in general not of the first
form (of course it is if τ = id).

We will be able to make the Dirac operator Real, we have to make sense of
the K-theory of Real C∗-algebras, on top of the grading we already saw.

4.1 Change of scalars to non-commutative C∗-algebras

• Throughout, we can replace the complex numbers by any C∗-algebra A;
get algebras C∗(M ;A), D∗(M ;A) (Mishchenko, Fomenko, Higson, Pedersen,

Roe,. . . ).

• In particular: C∗π1(M), a C∗-closure of the group ring Cπ1(M).

• The whole story then relates to the Baum-Connes conjecture.

• Throughout, we can use the Dirac operator twisted with a flat bundle of
Hilbert A-modules, e.g. the Mishchenko bundle. All constructions and
results carry over (in our setup without too much extra work).
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• For compact M , we get Rosenberg index

ind(D) ∈ KdimM (C∗π1M)

refining ind(D) ∈ Z we started with.

5 Bordism and surgery constructions

5.1 Definition. Bordism: without orientation, with orientation, with framing,
with trivialization, leading to the groups/rings ΩO∗ , ΩSO∗ , Ωfr∗ , also to Ωspin∗ .

In this definition, a framing is an equivalence class of trivializations of the
stabilized normal bundle or equivalently the stabilized tangent bundle.

5.2 Theorem. Pontryagin-Thom construction as a tool for computing bordism
groups.

Example: Ωfr∗ = πs∗(S
0): framed bordism is stable homotopy. Ωfr∗ →

πs∗(S
0 = limn→∞ π∗+n(Sn): embed the framed manifold in Euclidean space with

a tubular neighborhood. Use the trivialization of the normal bundle to map
the fibers of the tubular neighborhood to Rn ⊂ Sn, and the rest to the point
+∞ ∈ Sn. The inverse map represents the stable homotopy class by a smooth
map f : Sn+∗ → Sn and takes as framed manifold the inverse image of a regular
point with trivializaiton of the normal bundle from the implicit function theorem.

Pontryagin had great hopes to have now a way to compute π∗(S
0) geometri-

cally. It turns out that the other way around is true: there are tools in algebraic
topology to compute homotopy groups which allow to compute many bordism
groups.

Better example: ΩSO∗ = π∗(MSO), the homotopy groups of the Thom space
for oriented vector bundles.

One gets ΩSO∗ ⊗ Q = Q[CP 2n, n ∈ {0, 1, . . . }], a polynomial ring in the
generators CP 2n.

There is a (somewhat complicated) criterion in terms of characteristic num-
bers which determines when a list of closed oriented manifolds is generating the
ring ΩSO∗ , and one can find these manifolds explicitly. Concretely: one has a
set of generators consiting of complex projective spaces, Milnor manifolds and
Dold manifolds.

The Milnor manifolds are bundles with fiber projective spaces over projective
spaces (shrinking fibers, the structure group being the isometry group). The
Dold manifolds are obtained from spheres, circles and projective spaces by taking
quotients by isometries and (twisted) products which also have evidently positive
scalar curvature.

5.3 Definition. Surgery: cuts out an embedded Sk × Dn−k out of an n-
dimensional manifold M and replaces this by Dk+1 × Sn−k−1 to obtain a man-
ifold M ′. Here, n− k is called the codimention of the surgery.

Example: connected sum is surgery of codimension n.
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AttachingDk+1×Dn−k toM×[0, 1] along the part Sk×Dn−k of its boundary
produces a bordism between M and M ′. We see that a surgery is producing a
bordism.

5.4 Theorem (Gromov-Lawson,Hajduk, Chernysh,Ebert-Frenck). Starting with
a Riemannian metric of positive scalar curvature on M , if M ′ is obtained from
M be surgeries of codimension ≥ 3,

• then one can construct a metric of positive scalar curvature on M ′ (Gromov-
Lawson).

• One can even construct a Riemannian metric of positive scalar curvature
on the canonical bordism between M and M ′ which is of product form near
the boundary

• the construction is canonical enough that this works in continuous families
(Chernysh)

• mistakes in the original arguments and details can all be corrected (several
authors, a nice reference is Ebert-Frenck)

• Indeed, one can deform within the space of metrics of positive scalar curva-
ture to a metric which has standard torpedo form near the surgery locus:
in Sk × Dn−k think of Dn−k as a cap over Sn−k−1 and eqip it with a
corresponding cap-torpedo metric (a suitable warped product over Sn−k−1.
Then the inclusion of psc metrics which are product of (any) metric on Sk

with torpedo on Dn−k into all psc metrics is a weak homotopy equivalence.
One can then cut out and glue back with psc.

Proof. We don’t give the technical proof. The most detailed reference (where
also all the mistakes of previous articles should be addressed) is [1].

Mnemo: one needs some independent source of psc where one does the
surgery. This is provided by the soul Sn−k−1 so that we need n − k − 1 ≥ 2
to have positive curvature there. The details require care (20 pages in Ebert-
Frenck).

We just saw that surgeries give rise to bordisms. A main point of Morse
theory is: all bordisms are obtained by a sequence of surgeries.

5.5 Definition. A Morse function on a smooth manifold W (it is allowed that
W is a bordism between a manifold M0 = ∂W0 and M1 = ∂W1 is a smooth
function f : W → R which is constant on M0, constant on M1 and has only
non-degenerate critical points (critical points are points with df = 0. They
are non-degenerate if the Hessian, say computed in local coordinates, is non-
degenerate i.e. a symmetric matrix without kernel). Moreover, all critical points
are assumed to lie in the interior of W .

The (Morse) index of a critical point is the number of negative eigenvalues
of the Hessian (i.e. 0 at a minimum and dim(W ) at a maximum)
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5.6 Example. On the bordism of a surgery we can define a Morse function
which grows from 0 on the original boundary to 1 on the result of surgery
boundary and which has precisely one critical point, which is non-degenerate
and of index k + 1.

In local coordinates on Dk+1×Dn−k the origin is the only critical point and
near it the function has the form −(x20 + . . . x2k) + (x2k+1 + . . . x2n).

5.7 Theorem (Morse lemma). One always finds local coordinates around a
non-degenerate critical point such that around it a Morse function has the form
of our example (if the index is k + 1).

In particular, passing from the level set c−ε to the level set c+ε for a critical
point of index k + 1 with value c of the Morse function (and no other critical
point in the inverse image of [c − ε, c + ε]) always is a bordism of a surgery of
codimension n− k.

Proof. This is the first cornerstone of Morse theory, covered in all its treatments.
Compare e.g. [4, Theorem 2.16] for the first and [4, Theorem 3.1, Theorem 3.2]
for the second assertion. Alternatively, compare [6, Section 3].

In the neighborhood of the critical point this is just the picture. Outside,
one uses the flow of the vector field grad f which provides the required diffeo-
morphism to the product with the interval, as the vector field has no zeros.

5.8 Lemma. The set of Morse functions on W is dense in the space of all
smooth functions (with given constant values on M0 and M1). We can also
achieve that critical values always have different values. Upto homotopy, we
can also assume that the index is non-decreasing in the value. Alternatively,
one can make the Morse function self-indexing (value=index).

As a consequence: every bordism is a sequence of surgeries (exercise: why).

Proof. This is a rather standard result of Morse theory and of course one of its
backbones: we can actually always use them and the theory coming with them!

Being standard, the result is explained in all texts on Morse theory, e.g. for
the basics in [4, Section 2] and the more refined statements in [4, Theorem 3.27]
(with preparation lemmas).

Alternatively, compare [6, Theorem 2.5] for the existence and [6, Section 4]
for the rearrangement of the indices.

5.9 Question. How does a surgery change the manifold, in particular its homo-
topy type, its homotopy groups?

Give here a very quick reminder of homotopy groups, if necessary.

Answer 1: it is almost impossible to describe the homotopy type completely,
and to compute all homotopy groups. Therefore, it is also not possible to
describe the full effect of surgeries.

However, if one does surgeries of small dimension/large codimension, one as
a very definite effect: one kills or creates homotopy classes.
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5.10 Proposition. Let M be an n-dimensional manifold and let Sk ⊂ M
represent α ∈ πk(M). The inclusion induced map πj(M \ Sk) → πj(M) is an
isomorphism if j + k + 1 < n and a surjection for j + k < n.

In the same way, the inclusion map M \ Sk ×Dn−k → M ′ is an iso on πj
for j + n − k − 1 < n − 1, i.e. j < k and an epi for j = k. Here, it maps
α (and therefore also the subgroup generated by α and even the Zπ1-submodule
generated by α) to zero.

If the inclusion map α is null-homotopic and 2k + 1 < n, the map Dk+1 ×
{∗} ↪→ M ′ can be extended to a map from Sk+1 which generates an additional
free factor of πk+1(M ′) compared to πk+1(M).

Proof. This is a result of homotopy invariance and general position. For the
precise computation of the changed group, it is van Kampen for k = 1 and the
pair sequence in homotopy together with a relative Hurewicz isomorphism for
k > 1.

Slogan: surgeries (of dimension lower than the middle dimension) have the
potential to adjust homotopy groups.

We want to apply this to a bordism W from M0 to M1 and want to make
the inclusion map M0 →W an isomorphism on the first homotopy groups.

5.11 Question. Surgery always comes with an associated bordism (where we see
a Morse function with a critical point which is passed). We just discussed how
the homotopy type of the level sets changes. A related question: how do the
sublevel sets change.

5.12 Proposition. Given a Morse function f : Wn → R such that f−1(c)
contains a single critical point of index k, the homotopy type of f−1(c + ε) is
the one of f−1(c− ε) with a single cell (here called handle) of dimension k, with
attaching map the inclusion map Sk → f−1(c− ε).

Proof. Deform the Dk×Dn−k which is attached along Sk×Dn−k to the central
Dk, using that Dn−k is contractible.

5.13 Corollary. A smooth bordism W from M0 to M1 is homotopy equivalent
to a relative CW-complex relative M0, with one cell of dimension k attached for
each critical point of index k of a Morse function for W from M0 to M1.

5.14 Proposition. A curious, but important observation: if f : W → R is a
Morse function for W from M0 to M1 then −f is one for W as a bordism from
M1 to M0. The critical points of f are precisely the critical points of −f , but
the index changes from k to dim(W )− k.

So: avoiding surgeries of small codimension to go from M0 to M1 corre-
sponds the task to avoid surgeries of small dimension when going from M1 to
M0. This is used a lot in the business.

We can then apply “critical point cancellation”:
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5.15 Theorem. If in a bordism W (of dimension n + 1) from M0 to M1 the
inclusion map M0 ↪→ W induces an isomorphism on πj for j < k < n− 2 and
an epimorphism on πk (the topologist then say that the inclusion map is a k-
equivalence. equivalently, the relative homotopy groups vanish in degree j ≤ k)
then we can change the Morse functions for W so that there are no critical
points of index ≤ k by “critical point cancellation and trading” (or “handle
cancellation and trading”).

Remark: along the way, one might have to create new k+1 and k+2-handles.

The strategy is: a given k-handle can be cancelled against a conveniently
located (k+1)-handle. So: simply add k+1-handles which can be used to cancel
against the k-handles. Before doing this, add also k + 2-handles which would
cancel with the new k+1-handles such that, with the new k+1 and k+2-handles,
we didn’t change the diffeomorphism type (alternatively, we changed the Morse
function by creating new critical points of index k+1 to cancel our critical points
of index k, and with new critical points of index k+2 which cancel the new ones
of index k + 1.

Then do the k versus (new) k + 1 cancellation.

Proof. This is a rather powerful theorem, and it should not be a surprise that
its proof is quite involved.

We need the basic result on handle cancellation as proved e.g. in [4, Theorem
3.28, Theorem 3.34] or [6, Theorem 5.4]. Note that Milnor states that the proof
of [6, Theorem 5.4] is “quite formidable”.

However, the handle cancellation theorem requires a pair of handles (critical
points) which are in a rather special configuration. That these exist is hard to
check, or rather not always true when one would need it.

First, one shows that one indeed can always us the handle cancellation result
to get rid of handles of index 0, compare [6, Theorem 8.1] or [3, p. 35]. Next,
one shows that one can trade 1-handles for 3-handles using calculations with the
(non-abelian) fundamental group, compare [3, p. 35-36] and finally, with con-
siderations of homology groups that one can trade q-handles for q + 2-handles
for q = 2, . . . , k. This requires a bit more work, compare [3, p. 36 ff]. Mil-
nor proceeds slightly differentily, but only for simply connected bordisms (and
boundaries): using [6, Theorem 7.6] he changes with a lot of effort the Morse
function such that the handles represent a preferred basis of the relevant relative
homology and then directly carries out the desired cancellation in [6, Theorem
7.8], without introducing new handles of higher degree. This works for n ≥ 5
and the index of the handle to be cancelled between 2 (cancelled against one of
index 3) and n− 2 (cancelled against one of index n− 1).

5.16 Theorem. In the following statements, dim(M0) ≥ 5.

(1) Given a simply connected spin manifold M0 and a spin bordism to M1, if
dim(M0) ≥ 5 we can choose the bordism W so that the inclusion M0 →W
is 2-connected.
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(2) Given a simply connected oriented manifold M0 which is not spin and an
oriented bordism to M1, then we can find such a bordism W such that the
inclusion M0 ↪→W is 2-connected.

(3) Given a connected dim(M) ≥ 5 dimensional spin manifold M0 with funda-
mental group π and a Bπ spin-bordism to M1, then there is such a bordism
W such that the inclusion M0 →W is 2-connected.

(4) correspondingly for an oriented manifolds which is non-spin.

Proof. We want to use surgeries to modify the bordism. For this, two important
problems have to be addressed:

• we can only do finitely many surgeries, so we have to show that after
finitely many steps we are done: we need to check that the group we want
to kill is finitely generated (in the appropriate category)

• We can only do surgery on embedded spheres with trivial normal bundle,
so we need to make sure that these two conditions can be satisfied.

This second condition is the reason for the distinction between the spin
case and the non-spin case!

Let us start with the classical simply connected case. Recall that a manifold is
is orientable if and only if the normal bundle of every embedded circle is trivial.
Moreover, recall that an oriented manifold is spin if and only if the normal
bundle of every embedded oriented 2-dimensional submanifold is trivial.

Start with a bordism W ′ from M0 to M1. As W ′ has finitely many compo-
nents, we can perform finitely many connected sum operations in the interior
to make it connected. The resulting connected compact bordism has (as every
compact manifold) finitely generated fundamental group. Because the dimen-
sion of the bordism is big enough, we can realize generators by disjoint embed-
ded circles, because of orientability, they have trivial normal bundle. So we can
perform the surgeries to kill the fundamental group of W

Next, by the Hurewicz theorem for the simply connected compactW , π2(W ) =
H2(W ) is a finitely generated abelian group. Because of the dimension and the
spin condition, we can realize a finite set of generators by embedded 2-spheres
with trivial normal bundle. Surgeries change W such that also π2(W ) = 0 and
therefore M0 ↪→W is 2-connected.

The relevant condition of finite generation are discussed in a pedestrian way
(and in the greater generality of non-simply connected spaces) in [7, Section 3]

Let us next look at the case where M0 (and therefore also W ) are non-spin
with M0 simply connected. As before, we can arrange W simply connected, as
well. Because W is non-spin there then will exist an embedded 2-sphere whose
normal bundle is non-trivial and indeed, it is impossible to perform surgeries
such that π2(W ) = 0.

Let a ∈ π2(M0) = H2(M0) be represented by a sphere with non-trivial nor-
mal bundle. Consider the group π2(W )/〈a〉. As quotient of a finitely generated
abelian group this is finitely generated. Choose finitely many generators and
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represent them by embedded spheres in the interior of W . If w2 of the nor-
mal bundle is non-zero (the normal bundle is not trivial), perform a connected
sum with a sphere representing a. Details of this can be found in [2, Proof of
Theorem C].

More details (and greater generality) is also contained in the treatment of
[1, Proposition 6.3] or in [8, Lemma 5.6].

As a corollary, we obtain the classification of simply connected oriented non-
spin manifolds which admit positive scalar curvature of Gromov and Lawson
[2, Theorem C].

5.17 Corollary. Let M a a compact simply-connected manifold without bound-
ary. If M is oriented and non-spin and of dimension n ≥ 5, then M admits a
metric of positive scalar curvature.

6 Stolz positive scalar curvature exact sequence

General feature: index is a cobordism invariant. Topologist’s approach: organize
the existence and classification problem in appropriate LES of groups and then
start computations.

6.1 Definition. (1) (spin) bordism groups Ωspinn (X) for a reference space X:

Cycles are closed n-dimensional spin manifolds Mn of dimension n with a
reference map f : M → X. The equivalence relation is “bordism with an
extension of the reference maps to X”: a spin compact manifold W with a
map F : W → X with ∂W = M1q (−M2) defines a spin bordism between
(M1, f1 := F |M1

: M1 → X) and (M2, f2 := F |M2
: M2 → X), and then

(M1, f1) and (M2, f2) define the same element of Ωspinn (X). Disjoint union
defines a group structure, postcomposition with a map u : X → Y makes
this a functor from the category of topological spaces to the category of
abelian groups. Cartesian product defines a Ωspin∗ -module structure.

Fact: this actually defines a generalized homoloy theory (taken all the
Ωspin∗ together). This way, there are many tools for computation. For
example, we have general suspension-type isomorphisms for the product
with a circle:

6.2 Example. Ωspin∗ (X × S1) ∼= Ωspin∗ (X) ⊕ Ωspin∗−1 (X). For the first
summand, the isomorphism sends uses the functoriality along the inclusion
X = X × {1} ↪→ X × S1. For the second summand, f : Mn−1 → X is
mapped to f × id : M ×S1 → X×S1 with the spin structure on S1 which
is the boundary of D2.

6.3 Remark. The corresponding works for oriented bordism or other bor-
dism theories.

(2) Next, we define a group Posspinn (X) which encodes the geometric data
of positive scalar curvature. Its cycles are like the cycles for Ωspinn (X),
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equipped in addition with a fixed metric g of positive scalar curvature on
M . Similarly, the bordism relation requires bordisms with a metric of
positive scalar curvature extended over W (which is of product form near
the boundary and restricts to the given psc metrics on the boundary).

Note that this is again a group by disjoint union and covariantly functorial
in X.

(3) There is a canonical “forget structure” natural transformation Posspin∗ (X)→
Ωspin∗ (X) which simply forgets the metric.

(4) In such a situation, it is possible in rather large generality to define a
relative group which interpolates between the other two and finally leads
to a long exact sequence. Here, these are the R-groups of Stolz, with cycles
for Rspinn+1 (X) given by a compact spin manifold W with boundary and with
reference map f : W → X together with a positive scalar curvature metric
on ∂W . The equivalence relation is bordism of such manifolds (which
involves to deal with bordism of manifolds with boundary): we start with
a psc bordism X between ∂W1 and ∂W2. We can then glue W1 to X
along ∂W1 and further glue W2 to this along ∂W2. The result is a closed
spin manifold, and we ask for a bordism of this. One can also introduce
corners to realize this as bordism of manifolds with boundary (with psc
on the boundary strata).

Again, this is a group by disjoint union and functorial in X.

We obtain canonical natural transformation Rn+1(X) → Posn(X) just
taking the boundary, and a canonical transformation Ωspinn (X)→ Rn(X)
by realizing that a closed manifold is also a manifold with boundary, which
is empty (and therefore also carries tautoligically a metric of positive scalar
curvature).

6.4 Proposition. The groups and transformations just defined form functorial
long exact sequences of abelian groups

→ Rn+1(X)→ Posn(X)→ Ωspinn (X)→ Rn(X)→

Recall that a sequence of abelian groups is exact if at each place the kernel of
the outgoing map is precisely the image of the incoming one.

Proof. Many steps are tautological and left to you. Given (M,f : M → X, g) ∈
Posn(X), its image in Rn(X) is zero via the bordism from ∅ = ∂M to ∅ given
by (−M, g), and then the zero bordism M × [0, 1] of the union of M and this
−M (glued along ∅, i.e. disjoint union).

As a second example, if (W, f, g) ∈ Rn+1(X) is mapped to zero in Posn(X),
i.e. if there is a psc bordism V of ∂W , we can glue W and −V along ∂W
to obtain the closed spin manifold B (with reference map to X. Moreover,
the product X × [0, 1] provides a bordism in Rn+1(X) between (W, g) and X
(considered as manifold with empty boundary, using V with its psc metric as
the boundary stratum.
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6.5 Remark. We are certainly very intersted in the groups in the Stolz sequence:
they encode a lot of information about existence (and classification) of psc
metrics. In particular, Posn(X) is relevant.

Starting with a closed spin manifold M , there are two particularly natural
choices for X: X = M with most canonical cycles of the form (id: M →M, g):
this concentrates on the psc metric g (provided one exists!)

The second natural choice is X = Bπ1(M) with f : M → Bπ1(M) inducing
an isomorphism of fundamental groups (this map is unique upto homotopy,
therefore also upto bordism). This concentrates on all manifolds with a given
fundamental group and is universal for those.

Good news. The group Rn(X) depends only on the fundamental group of
X (compare the following theorem).

Bad news. Nonetheless there is no single interesting example where we can
compute it. An alternative, algebraic way to do this would be desirable (and
indeed, this is what happens in parallel situations, e.g. in surgery theory when
trying to classify manifolds upto diffeomorphism).

The following theorem is essentially due to Stolz and implicit in [8, Section
5].

6.6 Theorem. Let f : X → Y be a 2-connected map (iso on π0, π1 and surjec-
tive on π2). Then the induced map Rn(X)→ Rn(Y ) is an isomorphism.

Proof. It suffices to do this for connected spaces and with Y = Bπ, π = π1(X)
(the general case follows by considering one component at a time, and by com-
paring both X and Y to Bπ).

Let us show surjectivity (which follows also directly from [8, Proposition
5.8]). We hope to give a proof which is more transparent and direct.

Given a cycle (W, f : W → Bπ, g) we need to change it to an equivalent cycle
such that the map factors over X. Here, we can use the following principles:

(1) restricted to the 2-skeleton, the map X → Bπ has a split Bπ(2) → X,
therefore it suffices to factor the map over Bπ(2).

(2) A map from a space homotopy equialent to a 2-dimensional CW-complex
to Bπ factors (upto homotopy) over the inclusion Bπ(2) ↪→ Bπ of the
2-skeleton (and homotopies are rather trivial bordisms).

Choose now a Morse function for W considered as bordism from the empty
set to ∂W . and order the critical points according to their index.

Decompose W as bordism W1 consisting only of handles of dimension 0, 1, 2
from the empty set to M1 and W2 from M2 to ∂W . By this decomposition,
there are no critical points of low index from M2 to ∂W or, dually, there are no
surgeries of codimesion < 3 in W2 as bordism from ∂W to M1. Consequently,
we can use the Gromov-Lawson-Hajac surgery theorem to extend the psc metric
from ∂W to W2, ending in one such metric g1 on M1.

Now, this structure provides a bordism between (W, g, f) and (W1, g1, f |W1
)

(the bordism is again given by W × [0, 1]).
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Finally, observe that W1 consists only of 0, 1, and 2-handles, i.e. is homotopy
equivalent to a 2-dimensional CW-complex, so that f |W2 automatically factors
over Bπ(2).

Similarly, to prove injectivity, start with cycle (W, g, f : W → X) with a
zero bordism B over Bπ. We can think of the resulting object (after pulling a
tubular neighborhood of ∂W in the bordism out) as follows: B is a manifold
with corners. It has three boundary parts: W at the bottom, then ∂W × [0, 1]
vertically, then W2 on top. There is a map to Bπ, which factors through X
(or equivalently Bπ(2)) on the bottom and on the vertical part M × [0, 1] of the
boundary.

Because the vertical boundary is constant, we can obtain B by attaching
handles in the interior starting from W . As before, we can decompose into B1

which only contains handles of dimension 0, 1, and 2 and which is a bordism
from W to W1 (with constant vertical boundary M × [0, 1/2]) and a second
bordism B2 from W1 to W2. On the latter, we can extend the psc metric on W2

over all of B2 (staying constant on the constant vertical boundary M × [1/2, 1],
as the construction is local). This way, we transport the psc metric to W1.

On the other hand, the map to Bπ restricts to on B1 to a map which factors
over Bπ(2) and therefore over X. This way, B1 provides the required 0-bordism
of (W, f, g) already for Rn(X).

6.7 Remark. Note that this construction works in all dimensions and does not
require any handle cancellations. This is not true for the next result of Stephan
Stolz [8, Theorem 6.8].

6.8 Theorem. The group Rn+1(Bπ) acts freely and transitively on the set of
concordance classes of metrics of positive scalar curvature on M if M is a closed
connected spin manifold of dimension n with fundamental group π and if n ≥ 5
(and if M admits a psc metric).

Proof. For more details on the proof compare [8, Theorem 6.8].

We start with the disjoint union of M × [0, 1] and a cycle W of Rn+1(M).
This is a bordism from M q ∂W to M , and we have a given psc metric on
M q ∂W . Now we do surgery on the interior to make the inclusion map of
M into this bordism a 2-connected map (involving connected sum,. . . ). This is
possible because of the assumptions, but requires extra care (finite generation
of the relevant groups to kill, spin structure to have trivial normal bundles, high
enough dimension to represent by embeddings and be able to do the required
handle trading). Then the Gromov-Lawson surgery theorem allows to transport
the metric. Further work with bordisms shows that this is well defined when
mapping to concordance classes of psc metrics.

Transitivy follows by acting with W = M × [0, 1] with metric g q g2 on
∂W = M q−M .

Although unfortunately, until now we have not been able to completely com-
pute Rn(π) in any relevant case, we are able to get quite a bit of information by
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explicit constructions and by detection, obtaining lower bounds on the complex-
ity of objects like Rn(π), Posspinn (M), Posspinn (Bπ) or also the set of components,
concordance classes or bordism classes of psc metrics on a given manifold M
(admitting at least one such metric). A host of results in this direction can be
found for example in [7] and in [9].

7 Not covered in course: Non-negative versus
positive scalar curvature

The Ricci flow is an extremely powerful tool to study positive curvature.
This is the following non-linear evolution equation for the metric:

∂g(t)

∂t
= −2 Ricg(t) .

This is one of the hot tools in geometric analysis. It plays a pivotal role in
Perelman’s proof of the Poincaré conjecture (proposed by Hamiton).

Fundamental properties:

(1) a priori estimates are possible

(2) in particular, one has short-time existence for solutions of the initial value
problem with arbitrary initial values on a compact manifold

(3) Ricci flow preserves positivity in several ways, in particular as follows:

If M is a closed manifold and g0 is a metric on M with non-negative scalar
curvature, consider the Ricci flow g(t) with g(0) = g0. Suppose that the
flow exists for all t ∈ [0, T ]. Then g(t) has non-negative scalar curvature for
all t ∈ [0, T ]. Moreover, g(t) has positive scalar curvature for all t ∈ (0, T ]
unless g0 is Ricci flat, in which case g(t) = g0 for all t ∈ [0, T ].

(4) blowup in finite time does occur: the round sphere shrinks to a point.
Therefore, rescaling is applied. Even after rescaling, in general blowup
does occur, and necessarily the (scalar) curvature blows up. Understand-
ing the blow-up regions is key to the topological use of the Ricci flow.
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